Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1058, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853179

RESUMO

Several drug screening campaigns identified Calpeptin as a drug candidate against SARS-CoV-2. Initially reported to target the viral main protease (Mpro), its moderate activity in Mpro inhibition assays hints at a second target. Indeed, we show that Calpeptin is an extremely potent cysteine cathepsin inhibitor, a finding additionally supported by X-ray crystallography. Cell infection assays proved Calpeptin's efficacy against SARS-CoV-2. Treatment of SARS-CoV-2-infected Golden Syrian hamsters with sulfonated Calpeptin at a dose of 1 mg/kg body weight reduces the viral load in the trachea. Despite a higher risk of side effects, an intrinsic advantage in targeting host proteins is their mutational stability in contrast to highly mutable viral targets. Here we show that the inhibition of cathepsins, a protein family of the host organism, by calpeptin is a promising approach for the treatment of SARS-CoV-2 and potentially other viral infections.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Catepsinas , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Inibidores de Proteases/farmacologia , Cisteína Endopeptidases/metabolismo
2.
Tuberculosis (Edinb) ; 136: 102254, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36126496

RESUMO

In our laboratory, Mycobacterium caprae has poor growth in standard medium (SM) 7H9-OADC supplemented with pyruvate and Tween-80. Our objectives were to identify mutations affecting M. caprae metabolism and use this information to design a culture medium to improve its growth. We selected 77 M. caprae genomes and sequenced M. caprae NLA000201913 used in our experiments. Mutations present in >95% of the strains compared to Mycobacterium tuberculosis H37Rv were analyzed in silico for their deleterious effects on proteins of metabolic pathways. Apart from the known defect in the pyruvate kinase, M. caprae has important lesions in enzymes of the TCA cycle, methylmalonyl cycle, B12 metabolism, and electron-transport chain. We provide evidence of enzymatic redundancy elimination and epistatic mutations, and possible production of toxic metabolites hindering M. caprae growth in vitro. A newly designed SM supplemented with l-glutamate allowed faster growth and increased final microbial mass of M. caprae. However, possible accumulation of metabolic waste-products and/or nutritional limitations halted M. caprae growth prior to a M. tuberculosis-like stationary phase. Our findings suggest that M. caprae relies on GABA and/or glyoxylate shunts for in vitro growth in routine media. The newly developed medium will improve experiments with this bacterium by allowing faster growth in vitro.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Genômica , Ácido Glutâmico , Glioxilatos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Polissorbatos , Piruvato Quinase , Piruvatos , Ácido gama-Aminobutírico
3.
Sci Rep, v. 12, 3890, mar. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4257

RESUMO

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab′)2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab′)2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.

4.
Front Vet Sci ; 8: 666283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981748

RESUMO

The molecular typing of Mycobacterium bovis, which causes bovine tuberculosis, can be accomplished by combining different polymorphic markers, contributing to its epidemiological investigation. Multispacer sequence typing (MST) is a sequencing-based method that employs intergenic regions susceptible to higher mutation rates given the low selection pressure. It has been applied to M. tuberculosis, but not to M. bovis. The aim of this study was to evaluate a MST for M. bovis. A total of 58 strains isolated from tissues with lesions suggestive of bovine tuberculosis, coming from cattle herds in six Brazilian states and four standard samples of M. bovis were typified employing the MST technique. Fourteen intergenic regions were used, and four types of genetic events were reported: single nucleotide mutation (SNP), insertion, deletion, and tandem repeat (TR). Seven loci were chosen for typing. Twenty-eight type sequences (ST) were identified, indicating type sequences (ST) were identified, indicating a 92.9% HGDI (Hunter Gaston Discriminatory Index). The data were used to analyze the evolutionary patterns of these isolates and correlate them to phylogeographic lineages based on the formation of clonal complexes generated from eBURST software. Later, we associated the MST with spoligotyping technique, currently considered the gold standard for classification of M. bovis. The results support the MST as an alternative method for genotyping of M. bovis. The method has the advantage of sequencing and the availability of sequences analyzed in public databases, which can be used by professionals around the world as a tool for further analysis. This was the first study to identify the variability of isolates of M. bovis by the MST method.

5.
Vet Microbiol ; 251: 108866, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33099078

RESUMO

Contagious agalactia (CA) is a serious disease notifiable to the World Organisation for Animal Health (OIE) causing severe economic losses to sheep and goat producers worldwide. Mycoplasma agalactiae, considered as its main etiological agent, inflicts a variety of symptoms in infected animals, including keratoconjunctivitis, mastitis, arthritis, ankylosis, abortions, stillbirths and granular vulvovaginitis. Despite its significance, developing a successful vaccine remains elusive, mostly due to the lack of knowledge about M. agalactiae's pathogenicity factors and pathogenic mechanisms, including its "core" antigens. The aim of this study was to identify, characterize and express antigenic proteins of M. agalactiae as potential vaccine candidates. Predicted proteins of type strain PG2 were analyzed using bioinformatic algorithms to assess their cellular localization and to identify their linear and conformational epitopes for B cells. Out of a total of 156 predicted membrane proteins, three were shortlisted as potential antigenic surface proteins, namely [MAG_1560 (WP_011949336.1), MAG_6130 (WP_011949770.1) and P40 (WP_011949418.1)]. These proteins were expressed in recombinant Escherichia coli strains. Purified proteins were evaluated for their antigenicity using Western blot and ELISA using sera of M. agalactiae-naturally infected and non-infected sheep and goats. All 3 proteins were specifically recognized by the tested sera of M. agalactiae-infected animals. Also, specific rabbit antisera raised against each of these 3 proteins confirm their membrane localization using TritonX-114 phase partioning, Western and colony immunoblotting. In conclusion, our study successfully identified P40 (as proof of concept and validation) and two novel antigenic M. agalactiae proteins as potential candidates for developing effective CA vaccines.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Mycoplasma agalactiae/química , Testes Sorológicos/métodos , Animais , Antígenos de Bactérias/genética , Epitopos de Linfócito B/imunologia , Feminino , Genoma Bacteriano , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Mycoplasma agalactiae/genética , Mycoplasma agalactiae/imunologia , Coelhos
6.
Rev Bras Parasitol Vet ; 24(4): 482-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689185

RESUMO

A large number of Brazilian zoos keep many endangered species of deer, however, very few disease surveillance studies have been conducted among captive cervids. Blood samples from 32 Brazilian deer (Blastocerus dichotomus, Mazama nana and Mazama americana) kept in captivity at Bela Vista Biological Sanctuary (Foz do Iguaçu, Brazil) were investigated for 10 ruminant pathogens, with the aims of monitoring deer health status and evaluating any potential zoonotic risk. Deer serum samples were tested for Brucella abortus, Leptospira (23 serovars), Toxoplasma gondii, Neospora caninum, bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, foot-and-mouth disease virus, western equine encephalitis virus, eastern equine encephalitis virus and Venezuelan equine encephalitis virus. Antibodies against T. gondii (15.6%), N. caninum (6.2%) and L. interrogans serogroup Serjoe (3.1%) were detected. The serological results for all other infectious agents were negative. The deer were considered to be clinically healthy and asymptomatic regarding any disease. Compared with studies on free-ranging deer, the prevalences of the same agents tested among the captive deer kept at the Sanctuary were lower, thus indicating good sanitary conditions and high-quality management practices at the zoo.


Assuntos
Animais de Zoológico/imunologia , Anticorpos Antiprotozoários/sangue , Cervos/imunologia , Leptospira interrogans/imunologia , Neospora/imunologia , Toxoplasma/imunologia , Animais , Brasil/epidemiologia , Brucella abortus/imunologia , Coccidiose/epidemiologia , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Encefalite/imunologia , Vírus da Febre Aftosa/imunologia , Herpesvirus Bovino 1/imunologia , Estudos Soroepidemiológicos , Toxoplasmose Animal/epidemiologia
7.
Rev. bras. parasitol. vet ; 24(4): 482-487, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-770310

RESUMO

Abstract A large number of Brazilian zoos keep many endangered species of deer, however, very few disease surveillance studies have been conducted among captive cervids. Blood samples from 32 Brazilian deer (Blastocerus dichotomus, Mazama nana and Mazama americana) kept in captivity at Bela Vista Biological Sanctuary (Foz do Iguaçu, Brazil) were investigated for 10 ruminant pathogens, with the aims of monitoring deer health status and evaluating any potential zoonotic risk. Deer serum samples were tested for Brucella abortus, Leptospira (23 serovars), Toxoplasma gondii, Neospora caninum, bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, foot-and-mouth disease virus, western equine encephalitis virus, eastern equine encephalitis virus and Venezuelan equine encephalitis virus. Antibodies against T. gondii (15.6%), N. caninum (6.2%) and L. interrogans serogroup Serjoe (3.1%) were detected. The serological results for all other infectious agents were negative. The deer were considered to be clinically healthy and asymptomatic regarding any disease. Compared with studies on free-ranging deer, the prevalences of the same agents tested among the captive deer kept at the Sanctuary were lower, thus indicating good sanitary conditions and high-quality management practices at the zoo.


Resumo Um grande número de zoológicos brasileiros abriga espécies de cervídeos ameaçados de extinção, entretanto, estudos de vigilância de doenças em cervídeos de cativeiro são escassos. Amostras de sangue de 32 cervídeos brasileiros (Blastocerus dichotomus, Mazama nana e Mazama americana), mantidos em cativeiro no Refúgio Biológico Bela Vista (Foz do Iguaçu, Brasil), foram investigados para 10 patógenos de ruminantes, visando monitorar o estado de saúde dos cervídeos e avaliar a presença de agentes zoonóticos. As amostras de soro foram testadas para Brucella abortus, Leptospira (23 sorovares), Toxoplasma gondii, Neospora caninum, diarreia viral bovina, rinotraqueíte infecciosa bovina, febre aftosa, encefalomielite equina do oeste, encefalomielite equina do leste e encefalomielite equina venezuelana. Foram detectados anticorpos para T. gondii (15,6%), N. caninum (6,2%) e para L. interrogans sorogrupo Serjoe (3,1%). As sorologias apresentaram resultado negativo para as demais doenças. Os cervídeos foram considerados clinicamente sadios e assintomáticos para doenças. Comparados aos estudos de populações de vida livre, as soroprevalências para os mesmos agentes testados foram menores para os cervídeos mantidos no Refúgio, indicando as boas condições sanitárias e a qualidade das práticas de manejo no zoológico.


Assuntos
Animais , Toxoplasma/imunologia , Cervos/imunologia , Anticorpos Antiprotozoários/sangue , Neospora/imunologia , Leptospira interrogans/imunologia , Animais de Zoológico/imunologia , Brasil/epidemiologia , Brucella abortus/imunologia , Estudos Soroepidemiológicos , Toxoplasmose Animal/epidemiologia , Coccidiose/epidemiologia , Vírus da Diarreia Viral Bovina/imunologia , Herpesvirus Bovino 1/imunologia , Vírus da Febre Aftosa/imunologia , Vírus da Encefalite/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...